The geometry of Euclidean convolution inequalities and entropy
نویسندگان
چکیده
منابع مشابه
Euclidean Geometry before non-Euclidean Geometry
In [3], in my argument for the primacy of Euclidean geometry on the basis of rigid motions and the existence of similar but non-congruent triangles, I wrote the following: A: “The mobility of rigid objects is now recognized as one of the things every normal human child learns in infancy, and this learning appears to be part of our biological progaramming.” B. “. . . we are all used to thinking ...
متن کاملForward and Reverse Entropy Power Inequalities in Convex Geometry
The entropy power inequality, which plays a fundamental role in information theory and probability, may be seen as an analogue of the Brunn-Minkowski inequality. Motivated by this connection to Convex Geometry, we survey various recent developments on forward and reverse entropy power inequalities not just for the Shannon-Boltzmann entropy but also more generally for Rényi entropy. In the proce...
متن کاملLinks between the Logarithmic Sobolev Inequality and the convolution inequalities for Entropy and Fisher Information
Relative to the Gaussian measure on R, entropy and Fisher information are famously related via Gross’ logarithmic Sobolev inequality (LSI). These same functionals also separately satisfy convolution inequalities, as proved by Stam. We establish a dimension-free inequality that interpolates among these relations. Several interesting corollaries follow: (i) the deficit in the LSI satisfies a conv...
متن کاملextensions of some polynomial inequalities to the polar derivative
توسیع تعدادی از نامساوی های چند جمله ای در مشتق قطبی
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 2010
ISSN: 0002-9939
DOI: 10.1090/s0002-9939-10-10304-9